Nature, Vol. 402, pp. 489 - 495 (December 2, 1999) © Macmillan Publishers Ltd.

The DNA Sequence of Human Chromosome 22

I. DUNHAM1, A. R. HUNT1, J. E. COLLINS1, R. BRUSKIEWICH1, D. M. BEARE1,

M. CLAMP1, L. J. SMINK1, R. AINSCOUGH1, J. P. ALMEIDA1, A. BABBAGE1,

C. BAGGULEY1, J. BAILEY1, K. BARLOW1, K. N. BATES1, O. BEASLEY1,

C. P. BIRD1, S. BLAKEY1, A. M. BRIDGEMAN1*, D. BUCK1*, J. BURGESS1*,

W. D. BURRILL1, J. BURTON1, C. CARDER1, N. P. CARTER1, Y. CHEN1, G. CLARK1,

S. M. CLEGG1, V. COBLEY1, C. G. COLE1, R. E. COLLIER1, R. E. CONNOR1*,

D. CONROY1*, N. CORBY1, G. J. COVILLE1, A. V. COX1, J. DAVIS1*, E. DAWSON1,

P. D. DHAMI1, C. DOCKREE1, S. J. DODSWORTH1*, R. M. DURBIN1,

A. ELLINGTON1, K. L. EVANS1, J. M. FEY1, K. FLEMING1, L. FRENCH1,

A. A. GARNER1, J. G. R. GILBERT1, M. E. GOWARD, D. GRAFHAM1,

M. N. GRIFFITHS1, C. HALL1*, R. HALL1, G. HALL-TAMLYN1, R. W. HEATHCOTT1*,

S. HO1*, S. HOLMES1, S. E. HUNT1, M. C. JONES1, J. KERSHAW1,

A. KIMBERLEY1, A. KING1, G. K. LAIRD1, C. F. LANGFORD1, M. A. LEVERSHA1,

C. LLOYD1, D. M. LLOYD1, I. D. MARTYN1, M. MASHREGHI-MOHAMMADI1,

L. MATTHEWS1, O. T. MCCANN1, J. MCCLAY1, S. MCLAREN1, A. A. MCMURRAY1,

S. A. MILNE1, B. J. MORTIMORE1, C. N. ODELL1, R. PAVITT1, A. V. PEARCE1,

D. PEARSON1, B. J. PHILLIMORE1, S. H. PHILLIPS1, R. W. PLUMB1, H. RAMSAY1,

Y. RAMSEY1, L. ROGERS1, M. T. ROSS1, C. E. SCOTT1, H. K. SEHRA1,

C. D. SKUCE1, S. SMALLEY1, M. L. SMITH1, C. SODERLUND1, L. SPRAGON1,

C. A. STEWARD1, J. E. SULSTON1, R. M. SWANN1, M. VAUDIN1*, M. WALL1,

J. M. WALLIS1, M. N. WHITELEY1*, D. WILLEY1, L. WILLIAMS1, S. WILLIAMS1,

H. WILLIAMSON1*, T. E. WILMER1, L. WILMING1, C. L. WRIGHT1, T. HUBBARD1,

D. R. BENTLEY1, S. BECK1, J. ROGERS1, N. SHIMIZU2, S. MINOSHIMA2,

K. KAWASAKI2, T. SASAKI2, S. ASAKAWA2, J. KUDOH2, A. SHINTANI2,

K. SHIBUYA2, Y. YOSHIZAKI2, N. AOKI2, S. MITSUYAMA2, B. A. ROE3, F. CHEN3,

L. CHU3, J. CRABTREE3, S. DESCHAMPS3, A. DO3, T. DO3, A. DORMAN3,

F. FANG3, Y. FU1, P. HU3, A. HUA3, S. KENTON3, H. LAI3, H. I. LAO3, J. LEWIS3,

S. LEWIS3, S.-P. LIN3, P. LOH3, E. MALAJ3, T. NGUYEN3, H. PAN3, S. PHAN3,

S. QI3, Y. QIAN3, L. RAY3, Q. REN3, S. SHAULL3, D. SLOAN3, L. SONG3,

Q. WANG3, Y. WANG3, Z. WANG3, J. WHITE3, D. WILLINGHAM3, H. WU3, Z. YAO3,

M. ZHAN3, G. ZHANG3, S. CHISSOE4, J. MURRAY4, N. MILLER4, P. MINX4,

R. FULTON4, D. JOHNSON4, G. BEMIS4, D. BENTLEY4, H. BRADSHAW4,

S. BOURNE4, M. CORDES4, Z. DU4, L. FULTON4, D. GOELA4, T. GRAVES4,

J. HAWKINS4, K. HINDS4, K. KEMP4, P. LATREILLE4, D. LAYMAN4, P. OZERSKY4,

T. ROHLFING4, P. SCHEET4, C. WALKER4, A. WAMSLEY4, P. WOHLDMANN4,

K. PEPIN4, J. NELSON4, I. KORF4, J. A. BEDELL4, L. HILLIER4, E. MARDIS4,

R. WATERSTON4, R. WILSON4, B. S. EMANUEL5, T. SHAIKH5, H. KURAHASHI5,

S. SAITTA5, M. L. BUDARF6, H. E. MCDERMID6, A. JOHNSON6, A. C. C. WONG6,

B. E. MORROW7, L. EDELMANN7, U. J. KIM8, H. SHIZUYA8, M. I. SIMON8,

J. P. DUMANSKI9, M. PEYRARD9, D. KEDRA9, E. SEROUSSI9, I. FRANSSON9,

I. TAPIA9, C. E. BRUDER9 & K. P. O'BRIEN9



Addresses: 1, The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;

2, Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;

3, Department of Chemistry and Biochemistry, The University of Oklahoma, 620 Parrington Oval, Room 311, Norman, Oklahoma 73019, USA;

4, Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Blvd, St. Louis, Missouri 63108, USA

5, Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia and the Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA;

6, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada;

7, Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA;

8, California Institute of Technology, Division of Biology, Pasadena, California 91125, USA;

9, Department of Molecular Medicine, Clinical Genetics Unit, Karolinska Hospital, CMM bldg. L8:00, 17176 Stockholm, Sweden * Present addresses: Division of Virology, Department of Pathology, Tennis Court Road, Cambridge CB12 1QP, UK (A. M. Bridgeman); Lark Technologies, Radwinter Road, Saffron Walden Essex,

CB11 3HY, UK (D. Buck, R. E. Connor, S. Ho); Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St Lucia QLD 4072, Australia (J. Burgess, J. Davis); Incyte Europe Ltd, 214

Cambridge Science Park, Cambridge CB4 0WA, UK (D. Conroy); Tepnel Life Sciences, Innovation Centre, Scotscroft Building, Wilmslow Road, Didsbury, Manchester M20 8RY, UK (S. J. Dodsworth); Department of Brassica & Oilseeds Research, Cambridge Laboratory, John Innes Centre, Norwich, Norfolk, UK (C. Hall);

Cancer Genetics Lab, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand (R. W. Heathcott); Dept. of Zoology, University of Cambridge, Downing Street, CB2 3EJ, UK (M. N. Whiteley);

Monsanto, Genomic Team, Mail Zone N3SA, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167,

USA (M. Vaudin); Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK (H. Williamson)

Abstract:

Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.